Relaxin counteracts the altered gastric motility of dystrophic (mdx) mice: functional and immunohistochemical evidence for the involvement of nitric oxide.

نویسندگان

  • M G Vannucchi
  • R Garella
  • G Cipriani
  • M C Baccari
چکیده

Impaired gastric motility ascribable to a defective nitric oxide (NO) production has been reported in dystrophic (mdx) mice. Since relaxin upregulates NO biosynthesis, its effects on the motor responses and NO synthase (NOS) expression in the gastric fundus of mdx mice were investigated. Mechanical responses of gastric strips were recorded via force displacement transducers. Evaluation of the three NOS isoforms was performed by immunohistochemistry and Western blot. Wild-type (WT) and mdx mice were distributed into three groups: untreated, relaxin pretreated, and vehicle pretreated. In strips from both untreated and vehicle-pretreated animals, electrical field stimulation (EFS) elicited contractile responses that were greater in mdx than in WT mice. In carbachol-precontracted strips, EFS induced fast relaxant responses that had a lower amplitude in mdx than in WT mice. Only in the mdx mice did relaxin depress the amplitude of the neurally induced excitatory responses and increase that of the inhibitory ones. In the presence of L-NNA, relaxin was ineffective. In relaxin-pretreated mdx mice, the amplitude of the EFS-induced contractile responses was decreased and that of the fast relaxant ones was increased compared with untreated mdx animals. Responses to methacholine or papaverine did not differ among preparations and were not influenced by relaxin. Immunohistochemistry and Western blotting showed a significant decrease in neuronal NOS expression and content in mdx compared with WT mice, which was recovered in the relaxin-pretreated mdx mice. The results suggest that relaxin is able to counteract the altered contractile and relaxant responses in the gastric fundus of mdx mice by upregulating nNOS expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relaxin and gastrointestinal motility.

Relaxin is involved in a variety of functions. Among them, relaxin influences gastrointestinal motility in mice mainly regulating the biosynthesis of nitric oxide, considered as the main substance causing smooth muscle relaxations. Relaxin is able to regulate the different nitric oxide synthase expression depending on the gut region considered. Relaxin also counteracts the hypermotility state, ...

متن کامل

Reversal by relaxin of altered ileal spontaneous contractions in dystrophic (mdx) mice through a nitric oxide-mediated mechanism.

Altered nitric oxide (NO) production/release is involved in gastrointestinal motor disorders occurring in dystrophic (mdx) mice. Since the hormone relaxin (RLX) can upregulate NO biosynthesis, its effects on spontaneous motility and NO synthase (NOS) expression in the ileum of dystrophic (mdx) mice were investigated. Mechanical responses of ileal preparations were recorded in vitro via force-di...

متن کامل

Evaluation of nitric oxide involvement in effect of lead on dependency to morphine in mice

In the present study, interactions between lead exposure with nitric oxide precursor (L-arginine) or nitric oxide synthase (NOS) inhibitor (L-NAME) on naloxone-induced jumping and diarrhea in morphine-dependent mice were examined. Chronic lead acetate (0.05%) exposure altered naloxone-induced jumping and diarrhea in mice. Jumping was decreased after 7 days and was unchanged 14 and 28 days after...

متن کامل

mdx muscle pathology is independent of nNOS perturbation.

In skeletal muscle, neuronal nitric oxide synthase (nNOS) is anchored to the sarcolemma via the dystrophin-glycoprotein complex. When dystrophin is absent, as in Duchenne muscular dystrophy patients and in mdx mice, nNOS is mislocalized to the interior of the muscle fiber where it continues to produce nitric oxide. This has led to the hypothesis that free radical toxicity from mislocalized nNOS...

متن کامل

Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort.

Although an increase in nitric oxide (NO) in muscle is reported to improve the outcome of deflazacort treatment for mdx mouse muscular dystrophy, the genetic homologue of Duchenne muscular dystrophy (DMD), the impact such treatment on the functional outcomes of the disease, including fiber susceptibility to exercise-induced injury, is not established. Experiments were designed to test whether t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 300 2  شماره 

صفحات  -

تاریخ انتشار 2011